EXERCISES [MAI 2.19]

PERCENTAGE CHANGE – FINANCIAL APPLICATIONS

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

PERCENTAGE CHANGE

1. METHOD A: By using the formula (a) $FV = 1000 \left(1 + \frac{8}{100}\right)^n = 1000(1.08)^n$

- (i) $FV = 1000(1.08)^5 = 1469$ (ii) $FV = 1000(1.08)^{-5} = 681$ (iii) Solve for n : $1000(1.08)^n = 2000$, n=9.0064 so n=10 (b) $FV = 1000\left(1 - \frac{8}{100}\right)^n = 1000(0.92)^n$ (i) $FV = 1000(0.92)^5 = 659$
 - (ii) $FV = 1000(0.92)^{-5} = 1517$
 - (iii) Solve for n: $1000(0.92)^n = 500$, n=8.31 so n=9

METHOD B: By using GDC-financial mode

(a)
$$I\% = 8$$
, $PV = -1000$, $[PMT = 0, P/Y = 1, C/Y = 1]$

- (i) Set n=5 then FV=1469
- (ii) Set n=-5 then FV=681
- (iii) Set FV=2000 then n=9.0064 and so n=10
- (b) I% = -8, PV = -1000 [PMT=0, P/Y=1, C/Y=1]
 - (i) Set n=5 then FV=659
 - (ii) Set n=-5 then FV=1517
 - (iii) Set FV=500 then n=8.31 and so n=9
- **2.** (a) 253250 (accept 253000)
 - (b) $1972 \rightarrow 2002$ is 30 years, increase of $1.3\% \rightarrow 1.013$

368000 (accept 368318)

(c) $250000 \times 1.013^n > 400000$ EITHER by GDC-SolveN or Graph OR $\Rightarrow 1.013^n > 40/25 \Rightarrow 1.013^n > 1.6$ $\Rightarrow n \log 1.013 > \log 1.6 \Rightarrow n > \log 1.6 / \log 1.013 \Rightarrow n > 36.4$

3. $1.023^{t} = 2$ EITHER GDC-SolveN OR $t = \frac{\ln 2}{\ln 1.023} = 30.48...$

30 minutes (nearest minute) Note: Do not accept 31 minutes.

4. (a)
$$\frac{15.2}{1.027} = 14.8 \text{ million}$$
, (OR $15.2(1.027)^{-1}$
(b) $\frac{15.2}{(1.027)^5} = 13.3 \text{ million}$ (OR $15.2(1.027)^{-5}$

FINANCIAL APPLICATIONS

5. METHOD A: By using the formula (a) (i) $FV = 10000 \left(1 + \frac{12}{100} \right)^5 = 17623.42$ (ii) $FV = 10000 \left(1 + \frac{12}{100 \times 2} \right)^{5\times2} = 17908.48$ (iii) $FV = 10000 \left(1 + \frac{12}{100 \times 4} \right)^{5\times4} = 18061.11$ (iv) $FV = 10000 \left(1 + \frac{12}{100 \times 12} \right)^{5\times12} = 18166.97$ (b) (i) $20000 = 10000 \left(1 + \frac{12}{100} \right)^n$ by GDC the solution is n = 6.11, so n = 7(ii) $20000 = 10000 \left(1 + \frac{12}{100 \times 12} \right)^{12n}$ by GDC the solution is n = 5.81, so n = 6

METHOD B: By using GDC-financial mode

(b) (i) I% = 12, PV= -10000, P/Y=1, C/Y=1, FV=20000. Then press n=6.11 so n = 7
(ii) I% = 12, PV= -10000, P/Y=1, C/Y=12, FV=20000. Then press n=5.81 so n = 6

6. (a) METHOD A: By using the formulas

- (i) 10000(1.05) + 10000 = 20500
- (ii) $10000(1.05)^2 + 10000(1.05) + 10000 = 31525$

(iii)
$$10000 \left(\frac{1.05^{11} - 1}{1.05 - 1} \right) = 142067.87$$

METHOD B: By using GDC-financial mode

I% = 5, PV= -10000, PMT= -10000, P/Y=1, C/Y=1.

- (i) Set n=1 then FV gives 20500
- (ii) Set n=2 then FV gives 31525
- (iii) Set n=10 then FV gives 142067.87

(b) By using GDC-financial mode FV=200000 gives n = 13.2 so n = 14

(c)	The 1 st 10000 runs for n years	$FV_1 = 10000 \times 1.05^n$
	The 2 nd 10000 runs for n-1 years	$FV_2 = 10000 \times 1.05^{n-1}$
	The last but one 10000 runs for 1 year	$FV_n = 10000 \times 1.05^1$
	The last payment is 10000 The total sum is 10000(1+1.05+1.05 ² +1.05 ³	$FV_{n+1} = 10000$ + + 1.05 ⁿ) = 10000 × $\left(\frac{1.05^{n+1} - 1}{1.05^{n+1} - 1}\right)$
	X	(1.05-1

[if the last payment is not included we subtract 10000 the result]

[if the last payment is not included we subtract 10000 from each result]

[if the last payment is not included we subtract 10000

from each result]

7. (a) METHOD A: By using the formulas

(i) Introduct 1.05 + 1000 - 11500
(ii) 10000(1.05¹ + 1000 × 1.05¹ + 1000 × 1.05¹ - 1
(iii) 10000 × 1.05¹⁰ + 1000 ×
$$\left(\frac{1.05^{10} - 1}{1.05 - 1}\right)$$
 - 28866.84
METHOD B: By using GDC: financial
 $1\% = 5$, PV = -10000, PMT = -1000, P/Y=1, C/Y=1.
(i) Set n=1 then FV gives 11500
(ii) Set n=2 then FV gives 13075
(iii) Set n=2 then FV gives 2886.84
(b) By using GDC: financial FV= 50000 gives n = 17.36 so n = 18
(c) The 1st 1000 runs for n years 10000 × 1.05st
The 1st 1000 runs for n -1 years 10000 × 1.05st
The last payment is 1000
Sum of the last n terms =1000(1+1.05¹+1.05²+1.05³+...+1.05st) = 1000 × $\left(\frac{1.05^s - 1}{1.05 - 1}\right)$
FV = 10000 × 1.05^s + 1000 × $\left(\frac{1.05^s - 1}{0.05}\right)$
fif the last payment is not included we subtract 10000 the result]
8. By using GDC: financial FV= 50000 gives n = 17.15 so n = 18
(a) 1% = 5, PV = -10000, PMT = -1000, P/Y=1, C/Y=12.
(i) Set n = 10 then FV gives 29116.41
(b) By using GDC: financial FV= 50000+1000 gives n = 17.15 so n = 18
9. By using GDC: financial
(a) 1% = 5, PV = -10000, PMT = -100, P/Y=12, C/Y=12.
(i) Set n = 10 then FV gives 31998.32
(b) By using GDC: financial
1% = 5, PV = -10000, PMT = -100, P/Y=12, C/Y=12.
(i) Set n = 12 then FV gives 31998.32
(b) By using GDC: financial
1% = 5, PV = -10000, PMT = -100, P/Y=12, C/Y=12.
(j) Set n = 120 then FV gives 31998.32
(k) By using GDC: financial
1% = 5, PV = -10000, P/T = 100, P/Y=12, C/Y=12.
(j) Set n = 120 then FV gives 31998.32
(k) By using GDC: financial
1% = 5, PV = -10000, P/T = 0000 (since we simply receive the interest of \$500)
(c) PMT = +500, FV = 10000 (since we simply receive the interest of \$500)
(c) PMT = +400, FV = 3711.05
(e) FV=0, then n = 14.2 so after 15 years, For n =15, FV = -789.28 so L = 210.72

- **11.** *n* = 10, I% = 15, PV= 20000, FV=0, P/Y=1, C/Y=1
 - (a) PMT = -3985.04 so the repayment is 3985.04 per year
 - (b) $3985.04 \times 12 = 39850.04$
 - (c) 39850 20000 = 19850.40
- **12.** *n* = 10×12=120, I% = 15, PV= 20000, FV=0, P/Y=12, C/Y=12
 - (a) PMT = -322.67 so the repayment is 322.67 per month
 - (b) $322.67 \times 120 = 38720.40$
 - (c) 38720.40 20000 = 18720.40

13. *n* = 10×4=40, I% = 15, PV= 20000, FV=0, P/Y=4, C/Y=4

- (a) PMT = -973.19 so the repayment is 973.19 per quarter
- (b) 973.19×40 = 38927.60
- (c) 38927.60 20000 = 18927.60
- 14. *n* = 10×12=120, PMT= , PV= 20000, FV=0, P/Y=12, C/Y=12
 - (a) I% = 13.12 so the interest rate is 13.12% (per year compounded monthy)
 - (b) $300 \times 120 = 36000$
 - (c) 36000 20000 = 16000
- **15.** $5000(1.063)^n > 10000$ (or $(1.063)^n > 2$)

METHOD A: trial and error by a GDC

A good way of communicating this is suggested below.

When n = 11, $(1.063)^n = 1.9582$, when n = 12, $(1.063)^n = 2.0816$ Hence n = 12 years

METHOD B: using logarithms

 $n \log(1.063) > \log 2 \implies n > 11.345...$ 12 years

16. (a) $\$ 1000 \times 1.075^{10} = \$ 2061$ (nearest dollar)

(b)
$$1000(1.075^{10} + 1.075^9 + ... + 1.075) = \frac{1000(1.075)(1.075^{10} - 1)}{1.075 - 1} = \$ 15\ 208 \text{ (nearest dollar)}$$

17. 15% per annum = $\frac{15}{12}$ % = 1.25% per month

r = 0.0718 [or 7.18%]

Total value of investment after *n* months, $1000(1.0125)^n > 3000 \Longrightarrow (1.0125)^n > 3$ $n \log (1.0125) > \log (3) \implies n > \frac{\log(3)}{\log(1.0125)}$

Whole number of months required so n = 89 months. [or directly by GDC]

18. (a) Value =
$$1500(1.0525)^3 = 1748.87 = 1749$$
 (nearest franc)
(b) $3000 = 1500(1.0525)^t \Rightarrow 2 = 1.0525^t$
 $t = \frac{\log 2}{\log 1.0525} = 13.546$ It takes 14 years.
(c) $3000 = 1500(1+r)^{10}$ or $2(1+r)^{10}$
 $\Rightarrow \sqrt[10]{2} = 1 + r$ or $\log 2 = 10 \log (1+r)$
 $\Rightarrow r = \sqrt[10]{2} - 1$ or $r = 10^{\frac{\log 2}{10}} - 1$

2

19. (a) (i) N = 24I % = 14 PV = -14000FV = 0P/Y = 4Then (€)871.82 (ii) 4×6×871.82 = (€)20923.68 (iii) 20923.68 −14000 = (€)6923.68 (b) (i) $0.9 \times 14000 (= 14000 - 0.10 \times 14000) = (\bigcirc 12600.00$ (ii) N = 72 PV =12600 PMT = -250FV = 0P/Y = 12C/Y = 12Then 12.56(%) EITHER Bryan should choose Option A, no deposit is required (c) **OR** Bryan should choose Option B cost of Option A (6923.69) > cost of Option B ($72 \times 250 - 12600 = 5400$) (d) real interest rate is 0.4 - 0.1 = 0.3%value of other payments $250 + 250 \times 1.003 + ... + 250 \times 1.00371 = 20058.43$ **OR** financial app on a GDC value of deposit at the end of 6 years $1400 \times 1.003 = 1736.98$ Total value is (€) 21 795.41 $N = 72 (6 \times 12)$ $I\% = 3.6 (0.3 \times 12)$ PV = 0PMT = -250FV =P/Y = 12C/Y = 12OR $N = 72 (6 \times 12)$ I % = 0.3PV = 0PMT = -250FV =P/Y = 1C/Y = 1

20. (a) (i)
$$n = 1, 1\% = -1.1, PV = -7000, P/Y=1, C/Y=1$$

Then FV = 6923
(ii) $n = 12, 1\% = -0.1, PV = -7000, P/Y=1, C/Y=1$
Then FV = 6916.46
OR
 $n = 1, 1\% = -1.2, PV = -7000, P/Y=1, C/Y=12$
Then FV = 6916.46
(b) (i) $n = 5, 1\% = -1.1, PV = -7000, P/Y=1, C/Y=1$
Then FV = 6623.38
(ii) $n = 60, 1\% = -0.1, PV = -7000, P/Y=1, C/Y=1$
Then FV = 6592.15
OR
 $n = 5, 1\% = -1.2, PV = -7000, P/Y=1, C/Y=12$
Then FV = 6592.15
(c) $n = 5, 1\% = 12, PV = -7000, P/Y=1, C/Y=12$
Then FV = 12716.88
(e) Per month Interest rate 1% inflation rate 0.1%
hence real interest rate = 1-0.1=0.9%
 $n = 5 \times 12 = 60, 1\% = 0.9, PV = -7000, P/Y=1, C/Y=1$
Then FV = 11983.07

OR

Per year interest rate 12% inflation $0.1 \times 12 = 1.2\%$ hence real interest rate = 12-1.2=10.8% (compounded mothly) n = 5, I% = 10.8, PV = -7000, P/Y = 1, C/Y = 12Then FV = 11983.07

(e)
$$I\% = 12$$
, $PV = -7000$, $PMT = 150$, $P/Y = 12$, $C/Y = 12$

(a) $n = 5 \times 12 = 60$. Then FV = 466.43

(b) If FV = 0 then n=63.17 so at the end of the 64th month. That is end of April 2025

OR Trial and error

For n=63 FV=26.04

For n=64 FV=-123.69

So at the end of April he will receive the last 150-123.69 =26.31 euros